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The one-dimensional flow of a unipolarly charged gas between an emitter 

and a collector is considered for a given discontinuous variation of velocity 

in the working gap (e.g. in the presence of a gasdynamic shock wave and a 
small parameter of electrohydraulic interaction). The effects of position and 

intensity of the velocity discontinuity and of the difference of electrode po- 

tentials on the flow properties are determined. It is shown that solutions 

yielding zero surface charges at the discontinuity can only be obtained in a 
limited range of variation of determining parameters. (‘Illside that range in- 
numerable solutions yielding nonzero surface charges are possible. A classi- 

fication of solutions is made on the basis of conditions proposed in [I]. 

1. Let us consider a one-dimensional flow of unipolarly charged medium in the gap 

0 < X S L between flat electrode grids for the following velocity distribution: 

z = X!L, L’,. r const, r : I 

In a stationary one-dimensional motion of gas with a shock wave at point t ( r is then 

the ratio of densities at the shock wave) such distribution of velocity obtains in the case 
of small parameter of electrohydraulic interaction, if the electrical forces do not affect 
the gasdynamic flow pattern. 

The distribution of electric potential rp, electric field E = fix (z), and of bulk 

charge density 4 in the region 0 < .r < 1 without allowance for diffusion of charged 
particles is defined by equations 

oj” = -Q, q = i/(u- cp’), i = coast, E :_1 - ‘p’ (1.1) 
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where tp, E and 9 are dimensionless equivalents of composite characteristics V&i b, 
V, 1 b and E)I* IhbL (b = const is the mobility of charged particles and a is the 
dielectric constant), respectively. Parameter i is the longitudinal component of electric 
current density normalized with respect to EV* 2 /4xbL . A prime denotes differentia- 
tion with respect to the variable 5. System (1.1) must be supplemented by boundary 
conditions and relationship, at the discontinuity at s =1 E. We shall consider flows in 
which the potential difference a = const is maintained and the source of charged 
particles works in the state of saturation [2] 

X = 0, cp _- 0, E =f -1; X = 1. cp - CL (i .3 

The dimensionless parameter a can be equal zero (flow between earthed walls), be 
greater than zero (external electric field directed upstream), or be less than zero (exter- 
nal electric field directed downstream). According to (1.1) the velocity discontinuity 
at I -7 E must result in a discontinuity of the charge density g and, depending on the 
location of discontin~i~ E and its intensity 1 / f , two cases are possible: a flow with 
zero surface charge at z = 5 (which we shall call “continuous”) or a flow with (3 # 0 
( “discontinuous” flow). 

In the first case the relatio~hi~ at 2 = F, are of the form 

x = E, (9) 7.: y2 -‘it = 0, (if = 0; (E} = 0 (1.3) 

where subscripts 1 and 2 denote, respectively, parameten up- and downstream of the 
shock wave front. For discontinuous solutions the conditions at x = E can be written as 

x-E, (Cpp> =o, {i}‘-:o, E2-i_Uz-=y>0 (1.4) 

A feature of the considered problem is that for any specified E, I and a there exists 
a certain interval of variation of y in which every point has a solution for the system 
(l.l), (1.2) and (1.4). The selection of physically feasible flow is made on the basis 
of the condition proposed in [I] according to which Y E 0. 

In what follows a positively charged gas is considered. Hence 

Q > 0, i > 0, (I =: {E) > 0 (1.5) 

The aim of this investigation is to determine the rangg, ofparameters 5, r and a with- 
in which either continuous or discontinuom solutions exist, and to establish the singular- 
ities of distribution of electrical parameters in the working gap. 

8. TO solve the problem it is necessary to integrate Eqs. (1.1) in regions 5 < g 
and x > E and then combine the solutions at z = 5. Using boundary conditions(L2) 

and condition i, =- iz = i, we obtain 

0~.5<~,~~=.2z-z1/8is (2.1) 

E < x < 1, qlr L a + r (5 - 1) + [(r2 -t 2i + criz - (P + 2ix -t #i* l!(3) 

Constants i and t (for specified E, ;P and a) are related by the equation 
f’L.2) 

a+r(~--l)++~(r* -\-2i+cf”r- (9 + 2i& + c)l’*] - E + + t y?@ --.: u 

which follows from condition {cp} = (.l . If the solution is continuous, then from con- 
dition {E) = 0 with the use of (2.1)’ we find the closing equation 
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(2.3) 

which together with (2.2) determines i and c. It can, however, be shown that the joint 

solution of these two equations (and by the same token prove the existence of continuous 
solutions) is not possible for any arbitrary E, r and a. It follows from (2.3) that a con- 

tinuous solution is defined by the inequalities 

1-r-1/2iEgO (i a (1 - ry i (28) (2.4) 

In the case of a discontinuous solution the constants i and c are determined with the 
use of (2.2). (2.1) and condition Ez -j- u2 = 0 , which yields 

J/T-L- fE+r(1-Q--l 
2 fl [<‘l*+(i -a” 

c = - r2 - 2it (2.5) 

From the derived formulas and the last of conditions (1.5) follows the inequality 

Es - E, = 3 (E, r, a) = 1 - r - 1/F; > 0 (i < (1 - r)2 / (2t)) (2.6) 

used as the criterion for selecting discontinuous solutions. Condition (2.6) together with 

(2.5) make it possible to determine the range of parameters (& r) within which for 

fixed a continuous solutions are obtained. This range is bounded by two curves: curve 
I ofset I (*) 

r = 

2 [ 4”’ + (t - Fg”’ 1 + 3 VC (3 - E) 

2 [<‘,’ + (1 - E)’ 21 -t 3 VC (1 - E) 
and curve 2 of set 2 

r = (a - E) / (1 - E) 

(2.7) 

(2.8) 

The inequalities (2.6) and (2.4) also imply that curve (2.7) is the boundaty of the region 

of parameters (E, r), in which continuous solutions exist. These two regions do not any- 

where cross each other but are continuously joined along curve (2.7). It follows from 

(2.4) and (2.6) that this line belongs to both continuous and discontinuous modes with 

its points representing at the same time solutions for o = 0 and h’2 _1- u2 = 0 . 

Along curve (2.8) a continuous transition takes place from the region of continuous solu- 
tions into that in which in our statement of the problem solutions do not exist at all 

(the “forbidden” zone). As implied by (2.5). points along curves of set 2 relate to no- 

load operation, since the current between electrodes is zero. In this case electric charges 
in the working gap are absent but according to (2.6), the surface charge at point z = c 
is nonzero. 

Note that in the region of discontinuous solutions the inequality 

-l&E,<-- (2.9) 

which relates the electric field intensity E, upstream of the shock wave and the velo- 
cities on both sides of the discontinuity, is valid. 

3. Depending on the dimensionless parameter a, the curves of sets 1 and 2 divide 
the considered region of ( E, r ) differently. For any Q < 1 curve 1, passing tnrough 
point (0, l), crosses the square (0 < g & 1, 0 4 I’ < I} , whilg curve 2 crosses 
that square only for a > 0. There are, thusfor 0 < a< 1 three regions which corre- 

l ) The possibility of existence of the analytic curve (2.7) was pointed out by I. P.Se- 
menova and A. E, Iakubenko during discussion of this problem. 
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spnd TV different solutions : region I of ~ntin~~ solution, region I I of discontinuous 
solution, and the forbidden region I I I . If a < 0 , the forbidden region is absent. These 

regions never cross each other but are con- 

tinuously joined along their common bound- 
aries. 

The solid line A shown in Fig. 1 belongs 
to set I and relates to a = 0. In this case 
the curve of set 2 degenerates into point 

(0, 0). hence the cross-hatched area repre- 
sents region II from which it is possible to 

pass into region I by crossing curve ~1 . It 
can be shown that for cx < 0 curves 1 move 

away from curve ,J+ in the direction of point 

(0, O), thus reducing region I I and increasing 

f 
region I, The dash line in Fig. 1 relates to 
a - 0.2. 

Fig. 1 Note that for a )r --h curves of set I 
tend to approach the straight line C, == 11. 

without, however. reaching it for any finite values of a, i. e, there is always a region of 

discontinuo~ solution, This is due to the fact that, owing to the boundary condition 

E (6) - -1 at the left-hand grid, there exists for any zi an arbitrarily small neighbor- 
hood of point x = 0, where the inequality (2.9) is valid, which indicates the existence 

of discontinuous solutions. 
The physical meaning of this shift of lines of set 7 is explained by the shift of maxi- 

mum potential toward point z - 0 with decreasing u at the electrode .z = f . This 

leads to the shortening of the Iong~tudinal axis segment along which the electric field 
is negative. This reduces (in terms of parameter $) the range of possible discontinuous 

solutions, since their existence requires that the inequalities (2.9) be satisfied. An in- 

crease of a has the opposite effect. 
It follows from formula (2. ‘I) that for all cx > CI curves I are displaced away from 

line A toward point (l.l), which results in the narrowing of region I. Since for % L-= 1 
curve 1 becomes the straight line r -7 I, region I degenerates into a straight line, 

Formula (2.8) shows that with increasing cz curve 2 moves toward point (1. I). thus 

increasing region I I I . The dash-dot lines 1 and 2 in Fig.1 represent the boundaries 

of regions for c( 0.2 , with region II lying between these. The arrows indicate the 

direction in which boundary curves are displaced, when 0 increases. 
Since for a -7 1 the two boundary lines merge with the straight r -= 1, the “rate” of 

displacement of curve ,? for CJ --* i is greater than that of curve 1. Thus, the increase 
of parameter u results in the decrease of regions II and I . At the limit of a ‘,- i the 
forbidden region occupies the whole of the considered square, while the remaining two 

regions degenerate into the straight line r = 1 . This corresponds to no-load operation 

with no shock wave in the working gap. 
The relative position of the three regions is shown in Fig. 2 for Several values of a. 

Curves 1’ and 1. bound region I I for a --:: 0.2 and curves 1’ and 2” for a = 0.9. res- 

pectively, The forbidden region and regions I lie, respectively, to the left of lines 2 

and to the right of curves 1 . 
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4. The results of computation of electrical parameters cp and Q for several pairs of 

values of (t. 1.) and (L -= 0 are shown, respectively. in Figs. 3 and 4. 
It is evident that for r -L 1 all parame- 

ters are continuous throughout the working 
gap. For r < 1 parameter 4 is always dis- 

continuous at the shock wave front, and the 
discontinuity is the more pronounced the 

smaller is r or E, while the electric field 

intensity may for certain specific values of 

(E;, r) be continuous. 
Calculations show that the presence of a 

shock wave reduces the current flow between 

grids. The higher the intensity of the gas- 

dynamic discontinuity at ‘, -; CotlSt the 
lower the current. This can be explained 

I)) tilt increased accumulation of charge 

downstream of the shock wave with increas- 

Fig. 2 
ing shock intensity. This leads to an incre- 

ase of potenCal in the interval 0 < -2: < 1 
and to a corresponding increase in absolute 

value of the negative electric field along 
the initial section of the gap. This deter- 

Fig. 3 Fig. 4 

mines the limit of current emission by the source. The same explanation applies to the 
increase of CJ at the front of a gasdynamic discontinuity with increasing intensity i / r 



828 v.1.0r1bovskl4 

of the latter. Curves of functions i (r) and U (r) for several fixed E (a = 0) areshown 
in Figs. 5 and 6 , respectively. Since the decrease of 5 for r = const means. in fact, 

Fi& 5 

the displacement of the gasdynamic discon- 
tinuity front into the region of electric 

fields of lower intensity, hence it results in 

0 a5 t 

Fig. 6 

increase accumulation of charge downstream of the front and, consequently, in the in- 
crease of u and the decrease of i. 

The authors thank A, 5. Vatazhln for his constant interest in this work. 
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